
Authentication.
Methods, which require authentication, must have 2 additional parameters:

● apiEmail: string, authenticating user email
● apiSig: string, request signature

 

User roles.
Upon successful authentication request received one of following roles: 

● USER - standard user, controls only his own data. This access level is used by client application.
● ADMIN - super user, can control other users’ data(profiles, locations, events, etc), also can make locations and events public. 

This access level is used by public site.
● OEM USER - special user, who only can create new users, which will have OEM user as parent. This access can be used by 

other sites or applications.

Formats.
Each request can have parameter for forcing response format:

● format: string. Can be set to “xml” or “json”. Default value is “json”

Errors.
Errors are returned as HTTP errors with detailed messages.

API methods.
Method URL Parameters Description Errors

Find keywords /keywords/find ● latitude*: double, -
90..+90

● longitude*: double, -
180..+180

 
● scope: list of strings, 

separated with comma. 

Authentication: optional 
(required for searching 
for private locations and 
events)
 
Required role: none or 
USER for private locations, 

● invalid arguments
● invalid signature
● invalid user ID
● permission 

denied



Allowed values: 
COUNTRY, STATE, 
COUNTY, CITY, 
NEIGHBOURHOOD, 
POINT_OF_INTEREST. 
All locations are returned 
if parameter is not 
specified

● date: date in format 
of “YYYY-MM-DD 
HH:mm:ss”. Used for 
finding events

● withEvents: boolean. 
Event keywords are 
returned if set to “true”. 
Default value: “true”

● userEmail: string. If 
specified and request 
has valid signature, then 
private locations and 
events owned by this 
user will be included in 
search. Otherwise only 
public locations and 
events will be scanned.

● appID: string, identifies 
client application or 3rd 
party developer. Can be 
used for tracking activity.

events
 
Returns:
List of keywords for 
locations, which cover 
specified point. If event 
keywords requested - 
they are matched by 
location keywords and 
date and appended to the 
returned list. If “userEmail” 
parameter is specified, 
then request must have 
valid signature. If “appID” 
is not specified, keyword 
“www.ipictdb.com test” will 
be appended to resulting 
keywords.

Create location /locations/create ● top*: double, Northern 
boundary latitude, -
90..+90

● bottom*: double, 
Southern boundary 
latitude, -90..+90

Authentication: required
 
Required role: ADMIN
 
Creates a private location 
for the user. Location type 

● invalid arguments
● invalid signature
● invalid user ID
● permission 

denied

http://�www.ipictdb.com
http://�www.ipictdb.com
http://�www.ipictdb.com
http://�www.ipictdb.com
http://�www.ipictdb.com
http://�www.ipictdb.com
http://�www.ipictdb.com


● left*: double, Western 
boundary longitude, -
180..+180

● right*: double, Eastern 
boundary longitude, -
180..+180

● keywords*: list of 
keywords, separated with 
comma

● userEmail*: location will 
be owned by specified 
user.

 
● makePublic: boolean. 

Default value - “false”. If 
set to “true”, will request 
the created location to 
become public

is “POINT OF INTEREST”. 
A location can be submitted 
to review to become public 
with flag “makePublic”. 
If location with the same 
boundaries already exists 
(private for this user) - 
new location keywords 
are added to the existing 
location keywords. New 
location won’t be created in 
this case, flag “makePublic” 
will be ignored.
 
Returns:
created or existing location

Update location /locations/update ● locationId*: integer, 
location ID

● top*: double, Northern 
boundary latitude, -
90..+90

● bottom*: double, 
Southern boundary 
latitude, -90..+90

● left*: double, Western 
boundary longitude, -
180..+180

● right*: double, Eastern 
boundary longitude, -
180..+180

● keywords*: list of 
keywords, separated with 
comma

Authentication: required
 
Required role: ADMIN
 
Updates existing user 
private location. If new 
location boundaries match 
another existing location 
(private for this user), 
keywords will be appended 
to that location. Location 
with specified ID will be 
removed. Flag “makePublic” 
will be ignored in this case.
 
Returns:
updated or existing location

● invalid arguments
● invalid signature
● invalid user ID
● invalid location ID
● permission 

denied



● userEmail*: location 
owner.

 
● makePublic: boolean. 

Default value - “false”. If 
set to “true”, will request 
the created location to 
become public

Delete location /locations/delete ● locationId*: integer, 
location ID

● userEmail*: location 
owner. Parameter used 
only with ADMIN access

Authentication: required
 
Required role: ADMIN
 
Deletes existing user 
private location
 
Returns:
removed location

● invalid signature
● invalid user ID
● invalid location ID
● permission 

denied

List locations /locations/list ● pageNumber*: integer. 
1..N.

● pageSize*: integer, 1..N.
● userEmail*: locations 

owner. Parameter used 
only with ADMIN access

Authentication: required
 
Required role: ADMIN
 
Finds user’s 
private locations. 
Parameters “pageNumber” 
and “pageSize” control 
number of returned 
locations.
 
Returns:
list of matching locations 
and information about 
total number of available 
locations.

● invalid arguments
● invalid signature
● invalid user ID
● permission 

denied



Create event /events/create ● startDate*: date in 
format, YYYY-MM-
DD or YYYY-MM-DD 
HH:mm:ss

● endDate*: date in format, 
YYYY-MM-DD or YYYY-
MM-DD HH:mm:ss

● locationKeywords*: 
list of strings, comma-
separted

● eventKeywords*: list of 
strings, comma-separted

● userEmail*: event 
owner.

 
● makePublic: boolean. 

Default value - “false”. If 
set to “true”, will request 
the created event to 
become public

Authentication: required
 
Required role: ADMIN
 
Creates a private event 
for the user. Every event 
has location keywords to 
bind events to locations. If 
time is not specified, it is 
considered to be 00:00:00 
for start date and 23:59:59 
for end date. If private 
event with the same dates 
and location keywords 
exists, event keywords are 
appended to existing event. 
Flag “makePublic” will be 
ignored in this case.
 
Returns:
created or existing event

● invalid arguments
● invalid signature
● invalid user ID
● permission 

denied

Update event /events/update ● eventID*: event ID
● startDate*: date in 

format, YYYY-MM-
DD or YYYY-MM-DD 
HH:mm:ss

● endDate*: date in format, 
YYYY-MM-DD or YYYY-
MM-DD HH:mm:ss

● locationKeywords*: 
list of strings, comma-
separted

● eventKeywords*: list of 
strings, comma-separted

● userEmail*: event 

Authentication: required
 
Required role: ADMIN
 
Updates existing private 
event. If updated events 
matches another event 
by dates and location 
keywords, event keywords 
will be appended to the 
existing event. Old event 
with ID eventID will be 
removed. Flag “makePublic” 
will be ignored in this case.

● invalid arguments
● invalid signature
● invalid user ID
● invalid event ID
● permission 

denied



owner.
 

● makePublic: boolean. If 
set to “true”, will request 
the created event to 
become public

 

 
Returns:
updated or existing event

Delete event /events/delete ● eventID*: event ID
● userEmail*: event 

owner. Parameter used 
only with ADMIN access

Authentication: required
 
Required role: ADMIN
 
Deletes user private event.
 
Returns:
removed event

● invalid signature
● invalid user ID
● invalid event ID
● permission 

denied

List events /events/list ● pageNumber*: integer. 
1..N.

● pageSize*: integer, 1..N.
● userEmail*: events 

owner. Parameter used 
only with ADMIN access

Authentication: required
 
Required role: ADMIN
 
Finds private events. 
Parameters “pageNumber” 
and “pageSize” control 
number of returned events.
 
Returns:
list of matching events and 
information about total 
number of available events. 

● invalid arguments
● invalid signature
● invalid user ID
● permission 

denied

Create user 
account

/users/create ● email*: user email. Must 
be unique

● password*: user 
password. Must match 
specific password rules

Authentication: not 
required
 
Required role: none
 

● invalid arguments
● email is not 

unique
● password doesn’t 

match rules



Creates new user. Rate 
limiting will be implemented 
for requests from the same 
IP to avoid spamming
 
Returns:
created user email

● permission 
denied

Get user profile /users/get ● email*: user email. Authentication: required
 
Required role: ADMIN
 
Returns:
user profile data.

● invalid signature
● invalid user ID
● permission 

denied

Update user 
profile

/users/update ● email*: string, user 
email.

● name*: string, user name
● phone: string, user 

phone number
● canCreateUsers: 

boolean flag. Default 
value - “false”

Authentication: required
 
Required role: ADMIN
 
Returns:
updated user profile data. 

● invalid arguments
● invalid signature
● invalid user ID
● password doesn’t 

match rules
● permission 

denied

 


